- CFA Exams
- 2025 Level I
- Topic 1. Quantitative Methods
- Learning Module 4. Probability Trees and Conditional Expectations
- Subject 1. Expected Value and Variance
Why should I choose AnalystNotes?
AnalystNotes specializes in helping candidates pass. Period.
Subject 1. Expected Value and Variance PDF Download
Expected Value
The expected value of a random variable is its probability-weighted average of the possible outcomes. When combined with probability, the expected value simply factors in the relative chances of each event occurring, in order to determine the overall result. The more probable outcomes will have a greater weighting in the overall calculation.
For a random variable X, the expected value of X is denoted E(X).
In investment analysis, forecasts are frequently made using expected value, for example, the expected value of earnings per share, dividend per share, rate of return, etc. It represents the central value of all possible outcomes.
Example
The organizers of an outdoor event know that the success of the event depends on the weather. It costs $50,000 to stage the event. If the weather is favorable, the organizers will take in $200,000. If the weather is moderate, the organizers will take in $80,000. If the weather is unfavorable, the organizers will be forced to abandon the event, and thus take in $0. The weather bureau forecasts that the chances of favorable, moderate and unfavorable weather are 20%, 30% and 50% respectively. Should the organizers go ahead and stage the event?
We can use expected value to work out what revenue the organizers can expect to generate. Once we have this number, we can compare it with the cost of the event, $50,000, to assess whether the venture is likely to be profitable.
Using the expected value formula, we will multiply each amount by its probability, and add the answers. E(X) = 200,000 x 0.2 + 80,000 x 0.3 + 0 x 0.5 = 40,000 + 24,000 + 0 = $64,000
Thus, the organizers can expect to take in $64,000. Since it costs $50,000 to stage the event, this translates to a profit of $14,000, so they should certainly go ahead with the venture.
It's important to realize that none of the outcomes actually produces an amount of $64,000. This is simply the weighted average of all possible outcomes. Although there is a 50% chance of a loss the big profit that will be made the remaining 50% of the time more than offsets this and creates an overall expected profit.
However, with a one-off concert, there is a major risk involved, particularly in the event of unfavorable weather. An easier way to interpret expected value is as follows: If a number of such concerts were held, the organizers can expect to achieve a profit of $14,000 for each concert. So expected values actually make more sense when viewed over the long run.
Variance
The variance of a random variable is the expected value (the probability-weighted average) of squared deviations from the random variable's expected value.
Variance is a number greater than or equal to 0.
- If it is 0, there is no dispersion or risk. The outcome is certain.
- Variance greater than 0 indicates dispersion of outcomes.
- Increasing variance indicates increasing dispersion, if all other factors are equal.
- Variance of X is a quantity in the squared units of X; it is difficult to interpret this variance.
The standard deviation is the positive square root of variance.
Variance and standard deviation measure the dispersion of possible outcomes around the expected value of the random variable. If all other factors are equal, increasing variance or standard deviation indicates increasing dispersion of the possible outcomes.
In the example above, we calculated the expected value of revenue to be $64,000. This was before we subtracted the costs. To calculate the variance of the organizers' revenue, we simply take each value, subtract 64,000, square the answer, multiply by the relevant probability in each case, and add.
Var (X) = [200,000 - 64,000]2 x 0.2 + [80,000 - 64,000]2 x 0.3 + [0 - 64,000]2 x 0.5 = 5824000000
The standard deviation is the square root of this number. So, SD(X) = 76,315.13611.
These numbers are often large, particularly if your original data comprises large numbers, as is the case here. Because the calculations for variance and standard deviation yield big numbers, we can conclude that the values in the data set are extremely variable and scattered fairly far away from the expected value.
User Contributed Comments 7
User | Comment |
---|---|
JGoff | SS2 certainly starts you off :) |
akif | These are common sense topics which are explained in detail-- i think reeding this in detail is waisting time-- |
johntan1979 | Someone's waist is growing reeds |
Shaan23 | Waste of time is writing about this being a waste of time... Im ok with wasting time thats why I wrote this. |
nishikori | @JGoff SS2 is ancient bro |
unknown | weeds* |
khalifa92 | similar terms but different concepts, not a waste of time. |
I am using your study notes and I know of at least 5 other friends of mine who used it and passed the exam last Dec. Keep up your great work!
Barnes
My Own Flashcard
No flashcard found. Add a private flashcard for the subject.
Add